Coronary MR/PET of Micro-Calcification in Atherosclerosis

Philip M. Robson, Ph.D.; Marc R. Dweck, M.D.; Maria Giovanna Trivieri, M.D.; Ronan Abgral, Ph.D.; Nicolas A. Karakatsanis, Ph.D.; Zahi A. Fayad, Ph.D.

1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
2 British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
3 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
4 Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, EA3878 GETBO, Brest, France

Introduction

Positron Emission Tomography (PET) is an established non-invasive imaging technology that allows the activity of specific disease processes to be measured. PET imaging using the radiotracer 18F-fludeoxyglucose (18F-FDG)1 has been used previously in the study of vascular inflammation in atherosclerotic plaque [1, 2]. FDG, a sugar analogue, is taken up more avidly by activated macrophages in the plaque compared to surrounding tissue. Consequently, increased 18F-FDG PET signal is a biomarker for active disease. Recently, 18F-sodium fluoride (18F-NaF), a PET tracer used in bone imaging that preferentially binds to areas of micro-calcification, has emerged as a marker of vascular micro-calcification activity in both aortic stenosis and atherosclerosis [3-5]. Whilst coronary calcium scoring using Computed Tomography (CT) measures macro-calcification and is well-established as a prognostic marker of coronary artery disease, the earlier stage of active micro-calcification is potentially a valuable marker of disease activity and of use for identifying patients with increased atherosclerotic burden and increased risk who may benefit from more aggressive risk factor modification.

Traditionally, cardiovascular PET imaging is performed using CT for anatomical and attenuation measurements. However, PET/CT imaging is limited by the additional radiation dose of CT, especially in chronic conditions such as atherosclerosis where serial imaging would be desirable. Moreover, vascular PET/CT imaging has predominantly focused on the aorta, carotid and peripheral arteries. Imaging of the coronary arteries, despite their great importance, is challenging owing to their small caliber and complex respiratory and cardiac motion. Although cardiac gating may be used in PET/CT to mitigate motion effects, data may invariably be lost. MR imaging on the other hand is well-suited for radiation-free imaging of cardiac motion required to correct PET data. The advent of hybrid systems combining PET cameras and Magnetic Resonance (MR) scanners is consequently of considerable interest for vascular imaging in atherosclerosis.

Coronary 18F-NaF MR/PET imaging in a patient post myocardial infarction

A patient (male, 64 years old) with unstable coronary artery disease who was 6 months post myocardial infarction for which he did not undergo revascularization underwent MR/PET imaging on the Biograph mMR system. He was injected with 5 MBq/kg 18F-NaF 30 minutes prior to PET imaging. PET data was acquired for 60 minutes. PET image reconstruction employed an iterative ordinary poisson ordered-subsets expectation-maximization algorithm with 21 subsets and 6 iterations incorporating point-spread-function resolution modeling [6], a 344 x 344 x 127 matrix and a 2 mm full-width-at-half-maximum Gaussian post-reconstruction filter. Attenuation correction included the body transmission coil and the 6-channel spine array mounted in the table, but omitted the 6-channel chest array used for cardiac imaging. Attenuation for the body was measured using a 6-7 minutes free-breathing golden-angle radial VIBE sequence2 to provide motion-averaged anatomical representation of the anatomy to match the PET data. Acquisition parameters

1 The full prescribing information for the Fludeoxyglucose F18 injection can be found at page XX.
increased 500 x 500 mm² coronal field-of-view, 72-88 slices covering the whole body with partial-Fourier Cartesian slice-encoding. 3 mm isotropic resolution, TR/TE 4.5/2.45 ms, in-phase TE, 9° flip angle, 1600 radial views. Images were segmented into background and soft tissue before being converted to υ-maps and incorporated into offline PET reconstruction software (e7-tools5, Siemens Healthcare). Free-breathing MR-attenuation correction is used to eliminate artifacts that can appear in the PET images due to mismatch of PET emission and attenuation data. Additional MR data acquired simultaneously included anatomical axial HASTE, short- and long-axis TrueFISP cine imaging, 3D whole-heart contrast-enhanced coronary MR angiography [7] and short-axis late gadolinium enhanced imaging. Increased ¹⁸F-NaF uptake was identified in the culprit plaque and short-axis late gadolinium enhanced imaging.

The future of coronary MR/PET imaging

The preliminary work presented in this article has demonstrated the feasibility of coronary MR/PET imaging by successfully identifying active coronary disease in a patient post myocardial infarction. Additional technical development will improve the robustness and quantitative accuracy of attenuation correction methods for MR/PET. Despite the superior coronary angiography and depiction of macro-coronary-calcification available with CT, combined MR/PET imaging is capable of excellent coronary angiography [8] and the potential for sensitive detection of macro-calcification [9] as well as having additional potential benefits. MR imaging provides a wealth of complementary information on plaque characteristics such as hemorrhage [9], vessel wall remodeling [10], and vessel wall permeability [11], as well as traditional cardiac MR measurements of morphology, function and scarring in a single scan. In addition, radiation-free MR imaging with its high spatial and temporal resolution has the potential to provide motion estimates that can be used to correct for the complex motion that affects coronary PET data, and will likely surpass cardiac gating that can be employed for PET/CT imaging. The continued development of ¹⁸F-NaF as a tracer of atherosclerotic disease activity will be exciting. Studies are underway to examine whether coronary ¹⁸F-NaF PET/CT provides prospective prediction of myocardial infarction in the PREFFIR trial (ClinicalTrials.gov NCT02278211). With increased interest in coronary MR/PET, the advent of new tracers targeting other aspects of the complex biology of atherosclerosis and thrombosis is an exciting possibility. Finally, the reduced radiation dose compared to PET/CT paves the way to investigate serial imaging of atherosclerotic disease activity in both clinical and research arenas.

References

Contact

Zahi A. Fayad, Ph.D., FAHA, FACC, FISMRM
Icahn School of Medicine at Mount Sinai
Mount Sinai Endowed Chair in Medical Imaging and Bioengineering
Professor of Radiology and Medicine (Cardiology)
Director, Translational and Molecular Imaging Institute
Director, Cardiovascular Imaging Research
Vice-Chair for Research, Department of Radiology
One Gustave L. Levy Place
Box 1234
New York, NY 10029–6574
USA
Phone: +1 212 824 8452
Fax: +1 212 368 8096
zahi.fayad@mssm.edu