
 

 

Towards continualized task-based resolution modeling in PET imaging  
Saeed Ashrafinia

a
, Nicolas. Karakatsanis

a
, Hassan Mohy-ud-Din

a,b
, Arman Rahmim

a,b,* 

aDepartment of Radiology, Johns Hopkins University, 601 N. Caroline St, Baltimore, MD USA 21287; bDept. of 

Electrical & Computer Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD USA 21218 
*arahmim1@jhmi.edu; Phone (410) 502-6173; Fax (410) 955-0696; www.jhu.edu/rahmim 

ABSTRACT  

We propose a generalized resolution modeling (RM) framework, including extensive task-based optimization, 

wherein we continualize the conventionally discrete framework of RM vs. no RM, to include varying degrees of RM. 

The proposed framework has the advantage of providing a trade-off between the enhanced contrast recovery by RM and 

the reduced inter-voxel correlations in the absence of RM, and to enable improved task performance. The investigated 

context was that of oncologic lung FDG PET imaging. Given a realistic blurring kernel of FWHM h (‘true PSF’), we 

performed iterative EM including RM using a wide range of ‘modeled PSF’ kernels with varying widths  . In our 

simulations, h = 6mm, while   varied from 0 (no RM) to 12mm, thus considering both underestimation and 

overestimation of the true PSF. Detection task performance was performed using prewhitened (PWMF) and non-

prewhitened matched filter (NPWMF) observers. It was demonstrated that an underestimated resolution blur (  = 4mm) 

enhanced task performance, while slight over-estimation (  = 7mm) also achieved enhanced performance. The latter is 

ironically attributed to the presence of ringing artifacts. Nonetheless, in the case of the NPWMF, the increasing inter-

voxel correlations with increasing values of   degrade detection task performance, and underestimation of the true PSF 

provides the optimal task performance. The proposed framework also achieves significant improvement of 

reproducibility, which is critical in quantitative imaging tasks such as treatment response monitoring.  
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1. INTRODUCTION  

Resolution modeling (RM), also known as the point-spread function (PSF) modeling, has attracted considerable 

interest in PET, especially in the past decade (see recent review by Rahmim et al. [1]). Unlike post-reconstruction partial 

volume correction (PVC) methods [2-4], RM models resolution-degrading phenomena within the reconstruction step. It 

is an attractive alternative to a range of PVC methods that make simplifying assumptions. RM improves resolution and 

therefore achieves enhanced contrast recovery. At the same time, the following three issues pose concerns: 

(1) RM considerably modifies the noise texture. It reduces voxel variances, while increasing inter-voxel correlations 

[5-8]. These two effects impact noise differently based on the very definition of noise [6]. For instance, image roughness 

(        ) will decrease, but the ensemble standard-deviation of ROI mean uptake(    ) used to assess reproducibility, 

can remain unchanged [6] or even be significantly amplified especially for small ROIs [9, 10]. RM images, as such, can 

be deceptive, because they are likely to be assessed visually of having higher quality [11], since contrast is enhanced and 

spatial noise         is reduced. However, the potential degradation in reproducibility (also observed when utilizing PVC 

[10, 12]) adversely impacts quantitative imaging tasks as in pharmacokinetic imaging or treatment response monitoring.  

(2) The noise texture is more thoroughly captured by the noise power spectrum (NPS), which in fact determines 

detection task performance [1]: with RM, the NPS is amplified at frequencies in which the modulation transfer function 

(MTF) is improved, and turns out to compete against it, limiting detection performance in RM [8].  

(3) RM can lead to notable edge artifacts, reminiscent of the Gibbs ringing overshoot at the edges, as extensively 

reviewed recently [1]. An approach to address this issue was to use a reconstruction kernel that blurred the true PSF [14, 

15], i.e. underestimating its extent, and was shown to be effective at suppressing edge artifacts (e.g. see [9, 16]). Watson 

[17] suggested that direct use of measured PSF values within reconstruction actually over-estimated the PSF because 

reconstructions include additional ‘numerical’ mechanisms of point spread, primarily due to image discretization and the 

projection operations. Nonetheless, it can be shown [13, 16] (as we also show in this work) that even when the ‘true’ 

PSF actually has the exact same structure as the modeled PSF, edge artifacts can occur. 

Proposed approach: the abovementioned three issues and observations have prompted us to propose extensive task-

based assessment of a generalized RM framework, wherein we continualize the conventionally discrete framework of 
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RM vs. no RM, to include varying degrees of RM, including overestimation and underestimation of the ‘true PSF’. Such 

a generalized scheme allows consideration of a much wider array of images, which are subsequently analyzed in the 

context of different imaging tasks. We elaborate upon these next.  

2. THE GENERALIZED FRAMEWORK AND TASK-BASED ASSESSMENT 

2.1 Continualized RM imaging 

The investigated context was that of oncologic FDG PET imaging. In our initial assessment, we focused on lung 

tumor imaging, with SUV images at 45min, simulated based on kinetic parameters extracted from the literature ([18], 

Table II). Blurring was simulated in the image-space domain (being generalized in subsequent work to incorporate 

detection-space blurring), using a Gaussian blurring kernel with FWHM h (‘true PSF’). We then performed iterative EM 

including RM using a wide range of ‘modeled PSF’ kernels with FWHM denoted by  . In our simulations, h=6mm, 

while   varies from 0 (no RM) to 12mm, thus performing both underestimation and overestimation of the true PSF. We 

then focus on two different types of tasks: (i) detection and (ii) quantification, and seek to assess and optimize 

performance of the generalized RM framework. We discuss these two tasks next. 

 

2.2 Detection task performance 

RM results in increased inter-voxel correlations, as demonstrated by a number of groups including ours [5-8]. In fact, 

a number of experiments were performed in the distant past to quantify the impact of correlated noise (as induced by 

tomography) on human performance [19-23]. Overall, it was observed that human observer task performance was 

degraded by noise correlations. In fact, prior to these studies, it had been hypothesized by Wagner [36] that human 

observers would be inefficient when presented with noise-correlated structure, and that a non-prewhitened matched filter 

(NPWMF) as an observer for detection might better predict human performance compared to an observer performing 

prewhitening, which turned out to be true in later studies [22]. 

In the present work, we perform assessment of the impact of RM using both PWMF and NPWMF observers. Let us 

consider a signal- and background-known-exactly (SKE/BKE) ideal observer study of an ROI of size n with detected 

signal-absent s1 and signal-present s2 distributions (which are blurred versions of original signals f1 and f2), and with 

the addition of noise become g1 and g2, respectively. For a given image vector g of size n, not knowing whether it is 

signal-absent or present, the PWMF operator performs the following:  

      ( )    
      (1)  

by first applying the inverse of the n by n noise covariance matrix K, followed by the matched filter Δs = s2 – s1 (for 

an ideal observer. This difference signal is known exactly; otherwise, this can be computed by training, performing 

averaging and subtraction of a set of signal-present and signal-absent images, arriving at Δg ). By contrast: 

       ( )    
   (2)  

To perform ROC analysis, two general approaches can be utilized, following generation of various noise realizations 

of images with signal absent vs. present, and application of the abovementioned PWMF or NPWMF operators: (Method 

1) One may compute the inter-class (signal absent vs. present) signal-to-noise ratio (SNR). Then, under assumption of 

normality of the observer metric, e.g. a linear observer under Gaussian noise, the area-under-curve (AUC) of ROC 

analysis (true positive fraction vs. false positive fraction) can be shown to be given by [25]: 
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(3)  

where erf(z) represents the error function. For a general linear operator  ( )     , where   has the same 

dimensions as the image vector g, the inter-class SNR can actually be analytically derived ([25], see Eqs. 13.118 and 

13.180):  
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It thus follows for the case of PWMF, that since   w
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 ( )           (5)  

In fact, (4) attains its maximum in this case ([25], Eq. 13.184). By contrast, for NPWMF, where  w  s , we have: 
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(Method 2) Alternatively, one may use varying diagnostic thresholds or cut-offs to generate ROC curves, from which 

the area-under-curve (AUC) may be computed. In the present work, we implemented both approaches and verified 

nearly similar performances. However, we prefer the latter approach: this is especially because it does not make the 

assume normality, as mentioned before Eq. (3), and furthermore, for NPWMF, it does not require computation of the 

covariance matrix K, nor its inverse, as it only computes (2), followed by AUC computation, unlike (6) as needed by (3). 

2.3 Quantification task performance 

We generated noise vs. bias trade-off curves, as generated with increasing iterations into the various generalized RM 

algorithms. We also performed convergence analysis, in which an algorithm was quantified as converged, when the last 

10 iterations altered the bias no more than a certain threshold. We then computed the coefficient-of-variability (COV), 

which is the percentage of           compare to the mean uptake. We further include the contrast vs. noise trade-off. The 

two noise metrics were specifically defined as: (i) Spatial variance          , calculated for an image at a given noise 

realization (in the case of multiple noise realization measurements, this expression is subsequently averaged) via the 

following: 

 
 spatial

2 
1

N 1
si  m 

2

i1

N

  (7)  

Where si denotes the image values at any voxel i within a given ROI (e.g. tumor) consisting of N voxels and having a 

mean m. In the case of multiple noise realization measurements, this expression is subsequently averaged. 

(ii) Ensemble variance of ROI mean uptake mr across multiple noise realizations r=1…R, with the average ROI mean 

uptake : 

 

 ensemble
2 

1

R 1
mr  m 

2

r1

R

  (8)  

3. RESULTS 

Figures 1-2 show comparison 3D trade-off plots of AUC vs.   FWHM (in mm) and deconvolution iterations, 

including 3000 noise realizations, for the NPWMF and PWMF, respectively. Figures 3-4 depict the calculated AUC for a 

single iteration from SNR using error function (method 1), and from ROC curves (method 2), respectively, both yielding 

nearly similar curves. Overall, we observe optimal performance when   (4mm) underestimates the true h = 6mm, or 

slightly overestimates it (7mm); the latter is attributed to edge artifacts (Fig. 5) which can actually enhance AUC. 

Nonetheless, it is clearly seen that NPWMF, a more realistic model of human performance, performs increasing poorly 

with increasing   values, as they introduce increased inter-voxel correlations that can only be accounted for properly 

using PWMF.   

Figures 6 and 7 depict SUVmean COV and SUVmax COV vs. SUVmean bias; respectively. In these two figures, neither 

of no RM  =0 nor full RM ( = h=6) achieve the best noise-bias trade-off; yet Fig. 6 demonstrate the best performance 

achieved through  =4. The higher SUVmax COV in Fig. 7 compared to SUVmean COV in Fig. 6 is due to the greater Gibbs 

ringing artifacts for higher  . From Figures 6 and 7 we observe the superiority of   values close to h, as well as slightly 

overestimated and underestimated values as described above. Figure 8 contains noise-contrast trade-off plots, and shows 

higher contrast for higher   as a result of greater overshoot of the edges. This effect can be observed more in detail in 

Fig. 9, where the CRC vs. iterations is plotted. This plot shows how contrast increases faster for higher   for a fixed 

iteration.  

m
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Figure 1: comparison trade-off plots of AUC vs.   FWHM (in mm) 

and deconvolution iteration 
Figure 2: comparison trade-off plots of AUC vs.   FWHM (in mm) and 

deconvolution iteration 
  

   

Figure 3: AUC calculated from SNR (method 1) 

and evaluated for both PWMF and NPWMF.  
Figure 4:AUC of PWMF and NPWMF calculated 

from ROCs, respectively (preferred method 2). 
Figure 5: Single profile of g1, g2 and Δg 

and the true image for  =7mm. 
 
Table I. Converged Ensemble Noise Values. 

       0 1 2 3 4 5 6 7 8 

COV 3.44 3.42 3.47 3.54 3.58 3.93 4.12 4.75 5.01 

%change COV 0 -0.74 0.14 2.77 4.08 14.23 19.58 37.73 45.36 

 

The converged ensemble noise values based on the criteria described in section 2.3 is shown in Table I. In this table, 

we see that     4mm results in minimal increases in COV, with respect to no RM, while the impact is considerably 

higher for     6mm and     7mm. Overall comparison of above results reveals that underestimation of the true PSF can 

result in actually enhanced detection capabilities, while considerably lowering COV compared to full RM.    

  
Figure 6: SUVmean COV vs. SUVmean bias trade-off for iterations 1-20 Figure 7: SUVmax COV vs. SUVmean bias trade-off for iterations 1-20 
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Figure 8: Ensemble noise percent of g1 vs. contrast percent trade-off for 

iterations 1~100 

Figure 9: CRC vs. different   for iterations 1~100 

 

 

4. ONGOING WORK AND CONCLUSIONS 

We have proposed a generalized RM framework with extensive task-based optimization, to continualize the 

conventionally discrete framework of RM vs. no RM and apply various degrees of RM. We showed how this framework 

provides a trade-off between the enhanced contrast recovery by RM and the reduced inter-voxel correlations for no RM, 

and improves task performance. We run detection task performance for NPWMF and PWMF observers, while 

demonstrating two approaches to calculate AUC that converge to the same values. We assuming a blurring kernel with 

FWHM of h, and performed iterative EM including RM with varying widths  , to demonstrate that an underestimated 

resolution blurring   enhances task performance. A slight overestimation also achieves enhanced performance for an 

ideal observer because of the Gibbs edge artifacts; however, in the case of the NPWMF – a realistic model of human 

performance – increasing values of   degrade performance. Overall, the results reveal that underestimation of the true 

PSF can result in actually enhanced detection capabilities, while considerably lowering COV compared to full RM, thus 

providing  an attractive solution for both diagnostic and treatment response monitoring applications. 

In future work, we consider a diverse range of tumor geometries, locations and contrasts. Furthermore, in addition to 

SUVmean analysis, we will assess SUVpeak in the context of the proposed framework. We will also extend 

abovementioned ROC analysis, to additionally include detection + localization as performed in LROC analysis, which 

should enable a more realistic assessment of the proposed framework in oncologic imaging.  
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